

Presented By
City of Kaufman

We've Come a Long Way

Once again, we are proud to present our annual water quality report covering the period between January 1 and December 31, 2021. City staff continues to work hard every day to deliver the highest-quality drinking water without interruption. Although the challenges ahead are many, we feel that by investing in customer outreach and education, new treatment technologies, system upgrades, and training, the payoff will be reliable, high-quality tap water delivered to you and your family.

Public Participation Opportunities

The City of Kaufman City Council meets on the 4th Monday of every month at Kaufman City Hall in the Council Chamber at 6:00 p.m., located at 209 S Washington St. Kaufman, TX 75142. A public meeting will be held on Wednesday, July 13th, 2022 at 10:00 a.m. at City Hall in the Council Chambers for questions pertaining to the 2021 Annual Water Quality Report. For questions or concerns regarding this report or water quality, please call (972) 962-8007.

Information About Your Source Water

City of Kaufman purchases water from North Texas MWD Wylie WTP.

North Texas MWD Wylie WTP provides purchase surface water from Lake Lavon Reservoir, located in Collin County. The water is delivered to our ground storage tanks. From there, the water is delivered to customers through the city's distribution system. The North Texas Municipal Water District (NTMWD) receives raw water from Lavon Lake for treatment at the Wylie WTP. For detailed information on our water sources, treatment processes, and more, please visit NTMWD's Web site at www.ntmwd.com.

Water Loss Audit

If you have any questions about the water loss audit, call (972) 962-8007.

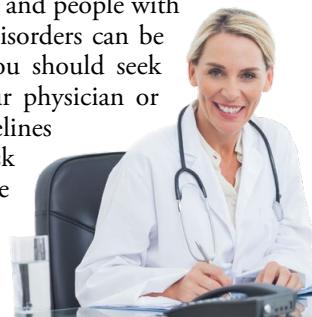
En Espanol

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al teléfono (972) 962-8007.

Source Water Assessment

Texas Commission on Environmental Quality (TCEQ) completed a Source Water Susceptibility for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with your drinking-water source, based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system, please contact NTMWD at (972) 442-5405 or send a message to environmental.info@ntmwd.com.

When the well is dry, we know the worth of water.


—Benjamin Franklin

Information on the Internet

The U.S. EPA (<https://goo.gl/TFAMKc>) and the Centers for Disease Control and Prevention (www.cdc.gov) Web sites provide a substantial amount of information on many issues relating to water resources, water conservation, and public health. Also, TCEQ has a Web site (<https://goo.gl/vNHNJN>) that provides complete and current information on water issues in Texas, including valuable information about our watershed.

Important Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as *Cryptosporidium*, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* are available from the Safe Drinking Water Hotline at (800) 426-4791.

QUESTIONS?

For more information regarding this report, or for any questions relating to your drinking water, please contact Director of Public Works Tim Hopwood at (972) 962-8007.

Information About Your Drinking Water

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottle water, may reasonably be expected to contain at least small amount of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally- occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include: Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife. Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which may also come from gas stations, urban stormwater runoff, and septic systems. Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, color or drinking water, please contact the system's business office.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Water Main Flushing

Distribution mains (pipes) convey water to homes, businesses, and hydrants in your neighborhood. The water entering distribution mains is of very high quality; however, water quality can deteriorate in areas of the distribution mains over time. Water main flushing is the process of cleaning the interior of water distribution mains by sending a rapid flow of water through the mains.

Flushing maintains water quality in several ways. For example, flushing removes sediments like iron and manganese. Although iron and manganese do not pose health concerns, they can affect the taste, clarity, and color of the water. Additionally, sediments can shield microorganisms from the disinfecting power of chlorine, contributing to the growth of microorganisms within distribution mains. Flushing helps remove stale water and ensures the presence of fresh water with sufficient dissolved oxygen, disinfectant levels, and an acceptable taste and smell.

During flushing operations in your neighborhood, some short-term deterioration of water quality, though uncommon, is possible. You should avoid tap water for household uses at that time. If you do use the tap, allow your cold water to run for a few minutes at full velocity before use and avoid using hot water, to prevent sediment accumulation in your hot water tank.

Please contact us if you have any questions or if you would like more information on our water main flushing schedule.

Table Talk

Get the most out of the Testing Results data table with this simple suggestion. In less than a minute, you will know all there is to know about your water:

For each substance listed, compare the value in the Amount Detected column against the value in the MCL (or AL, SCL) column. If the Amount Detected value is smaller, your water meets the health and safety standards set for the substance.

Other Table Information Worth Noting

Verify that there were no violations of the state and/or federal standards in the Violation column. If there was a violation, you will see a detailed description of the event in this report.

If there is an ND or a less-than symbol (<), that means that the substance was not detected (i.e., below the detectable limits of the testing equipment).

The Range column displays the lowest and highest sample readings. If there is an NA showing, that means that only a single sample was taken to test for the substance (assuming there is a reported value in the Amount Detected column).

If there is sufficient evidence to indicate from where the substance originates, it will be listed under Typical Source.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

BY THE NUMBERS

The number of Americans who receive water from a public water system.

300
MILLION

1
MILLION

The number of miles of drinking water distribution mains in the U.S.

34
BILLION

135
BILLION

The amount of money spent annually on maintaining the public water infrastructure in the U.S.

151
THOUSAND

199
THOUSAND

The number of highly trained and licensed water professionals serving in the U.S.

2
BILLION

The age in years of the world's oldest water, found in a mine at a depth of nearly two miles.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. And, the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The State recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set.

REGULATED SUBSTANCES

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Chlorine Residual (Chloramines) (ppm)	2021	[4]	[4]	2.9	1.6–4.2	No	Water additive used to control microbes
Nitrate (ppm)	2021	10	10	0.344	0.344–0.344	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Total Coliform Bacteria (Positive samples)	2021	TT	NA	1	NA	No	Naturally present in the environment
Total Haloacetic Acids (HAA5) ¹ (ppb)	2021	60	No goal for the total	18	12.6–27	No	By-product of drinking water disinfection
Total Trihalomethanes (TTHM) ² (ppb)	2021	80	No goal for the total	33	19.3–46.1	No	By-product of drinking water disinfection

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH %ILE)	SITES ABOVE AL	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2019	1.3	1.3	0.3079	0	No	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems
Lead (ppb)	2019	15	0	1.52	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

UNREGULATED SUBSTANCES³

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE
Bromodichloromethane (ppb)	2021	11.8	6.09–11.8	By-product of drinking water disinfection
Bromoform (ppb)	2021	<1.00	<1.00–<1.00	By-product of drinking water disinfection
Chloroform (ppb)	2021	32	10.1–32.0	By-product of drinking water disinfection
Dibromochloromethane (ppb)	2021	8.4	3.04–8.40	By-product of drinking water disinfection

¹The value in the Amount Detected column is the highest average of all HAA5 sample results collected at a location over a year.

²The value in the Amount Detected column is the highest average of all TTHM sample results collected at a location over a year.

³Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.